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Abstract

In this study, we explore the relationship between European carbon prices, energy

prices and the macroeconomy in boom and bust times. Utilizing a smooth transition

structural VAR model, we analyze monthly data spanning from 2006 to 2023. Our model

benefits from identification through non-Gaussianity and the correlation with external

carbon and energy shock series. Notably, our analysis reveals heterogeneous effects ob-

served across two distinct regimes of economic activity and when considering the cost

pass-through to the transport sector specifically. Furthermore, our findings support that

crises affect carbon prices, but challenge the notion of a strengthened linkage between car-

bon prices and economic performance in recent periods. Linking carbon price dynamics

to the business cycle allows us to discuss the role of a flexible emission cap in enhancing

the effectiveness of carbon pricing across various economic conditions. This is particularly

relevant for the recent extensions of the EU ETS to sectors like road transportation.
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1 Introduction

In recent years, the European Union has intensified its commitment to combat climate change

by implementing various measures. Carbon pricing has emerged as a pivotal tool in reducing

greenhouse gas emissions [Metcalf, 2009]. Understanding how carbon pricing performs with

regard to the business cycle is crucial to properly implement future extensions to the transport

and building sectors and regulations, e.g., the Market Stability Reserve. In this paper, we

analyse EU-level carbon pricing, the EU ETS, by means of a smooth-transition structural

vector autoregressive (SVAR) model. This allows us to study the causal effects both towards

and from carbon pricing in interaction with the macroeconomy and energy prices in boom

and bust times. The causal effects are identified by a flexible identification technique based

on non-Gaussianity.
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Figure 1: Potential series for the VAR model: Oil prices (Brent), coal price (Coal), carbon prices (EUA), gas

price (Gas), industrial production (indprod) and deseasonalized average total road freight transport (transp).

The EU ETS was introduced in 2005 and since then, has undergone several phases: 2005-

2007, 2008-2012, 2013-2020, and the current phase 2021-2030. At the same time, the economy

has experienced two major crises (2008 and 2020) with additional disruptions in energy prices
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(e.g., the steady increases until 2008 followed by a sharp drop, see, e.g., Kruse and Wegener

[2020]). The respective series of energy prices, i.e. Brent oil, coal and gas prices, industrial

production, transportation and the carbon price series are shown in Figure 1. Specifically

highlighting discussions on the endogeneity of the emission cap inducing a ’green paradox’

through the Market Stability Reserve (MSR) [Gerlagh et al., 2021], it is interesting to care-

fully distinguish between the exogenous and endogenous parts of carbon prices. Studying

the endogenous carbon price series, the empirical literature, e.g. Chevallier [2011], Aatola

et al. [2013], Friedrich et al. [2020], Zheng et al. [2021], have identified nonlinear relationships

of carbon prices with determinants as energy prices and financial markets. Such nonlin-

earities might be sourced in economic expansion and recession regimes. Carbon pricing is

discussed with regard to the business cycle by, e.g., Fischer and Springborn [2011], Doda

[2016], Lintunen and Vilmi [2021], Annicchiarico et al. [2022]. While emissions are found to

be procyclical [Doda, 2014], related policy discussions question whether carbon pricing tools

should respond to the business cycle [Bel and Joseph, 2015]. On the other side, theoretical

and empirical works have discussed the effects and effectiveness of carbon pricing in Europe,

see, e.g. Böhringer et al. [2009], Dissou and Karnizova [2016], Arlinghaus [2015] and, most re-

cently, Känzig [2023]. Sector-specific impacts are analyzed based on microdata, for instance,

on the EU level by Abrell et al. [2011] and Dechezleprêtre et al. [2023]. Further studies focus

on specific country settings and analyse the impact of carbon taxes, e.g., on manufacturing

in the UK [Martin et al., 2014] or transportation in Sweden [Andersson, 2019]. On EU level

the effects on non-covered sectors like transportation are, for instance, studied by analysing

the cost pass-through of carbon prices [Cludius et al., 2020]. We add to the literature by

empirically studying (sector-specific) impacts on EU level while conditioning on the business

cycle covering both crises in 2008 and 2020.

Structural VAR models have widely been applied to study the implications of macroeco-

nomic policy setting, mainly in the context of monetary and fiscal policies [see, e.g., Killian

and Lütkepohl, 2017]. Once an SVAR model is identified properly, it allows to study the

instantaneous, mid- and long-term effects of disruptions by impulse response functions, his-

torical decompositions and the like. In the present context, SVARs are useful to draw a more

concrete picture of the interaction of past carbon price changes with the macroeconomy and

energy prices, which helps to provide guidance for future policy setting. For assessing the
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identification problem and potential endogeneity, the SVAR literature has been developing a

vast force of economic and statistical identification techniques [cf e.g. Killian and Lütkepohl,

2017, for an overview]. For instance, Känzig [2023] accounts for endogeneity of carbon prices

utilizing a structural VAR model identified by a generated carbon policy shock series from

regulatory events. In difference in our study, we approach the series from the data itself,

identify carbon price shocks without prior economic assumptions based on non-Gaussianity

and can verify them with exogenous related policy events afterwards. We proceed analogously

for energy prices which we can verify with oil and gas event series generated by Känzig [2021]

and Alessandri and Gazzani [2023], respectively. In that sense, we focus on statistical identi-

fication driven by the uniqueness (up to scaling and permutation) of non-Gaussian structural

shocks [see, e.g., Lanne et al., 2017, Herwartz, 2018b] and apply the procedure used in Maxand

[2020] for identification.

We apply the smooth-transition SVAR to monthly EU-level data in the period of 2006M8-

2023M2. This allows for the following findings: we find non-linearity of the interaction be-

tween carbon and energy prices depending on the macroeconomic regime. The results indicate

a more uncertain response of economic performance to an increase in carbon prices in recession

times compared to expansions which is mostly statistically negligible. During the observation

period, the EU ETS covers greenhouse gas emissions from power stations, energy-intensive

industries and (partly) commercial aviation. When diving into different economic sectors,

namely manufacturing, aviation, construction and road transportation, we find no significant

effect in the covered sector manufacturing but an effect on aviation and an analog cost pass-

through of carbon prices to road transportation which is positive in recessions and negative

in expansions. Additionally, we identify economic crises to have a negative impact on carbon

prices. An increased coupling between carbon prices and gas prices in recent periods is sup-

ported and a coupling to the macroeconomy is rejected. In that sense, the results support

regulation mechanisms implemented along the ETS that ensure the effectiveness of carbon

pricing in strong crises, specifically, if the crises are characterized by a drop in carbon-intense

industries.

The paper proceeds as follows: We first discuss the SVAR methodology in Section 2 and

present the data and the results of the SVAR application to the European carbon market in

Section 3. Section 4 concludes.
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2 The empirical model

To analyse EU-wide monthly data, we follow the literature [Chevallier, 2011, Friedrich et al.,

2020] and account for non-linear relations by applying a smooth-transition VAR. We study the

interaction of carbon prices, macro economy and energy prices in a four-dimensional model

yt = G(zt−1)Al(L)yt−1 + (1−G(zt−1))Ah(L)yt−1 + ut, (1)

ut ∼ (0,Ω), (2)

where yt is the four-dimensional vector of endogenous variables, A•, • = h, l are the autoregres-

sive matrices for the higher and lower regimes, respectively. The matrix Ω is the covariance

matrix of the error terms ut and G(·) is the transition function depending on smoothness

parameter γ, location parameter c and transition variable zt in the following way

G(γ, c, zt) =
exp(−γzt − c)

1 + exp(−γzt − c)
, γ > 0, V ar(zt) = 1, E(zt) = 0. (3)

Estimation of the model proceeds by maximum likelihood estimation via NLS regime

dependent AR similar to Herwartz and Rohloff [2018]. For the calculation of impulse response

functions (IRFs) and for structural identification, the model is transformed in the following

way

Πt(L)yt = ut,

with Πt(L) =[I −G(zt−1)Al(L)L− (1−G(zt−1))Ah(L)L].

⇒ yt =Φt(L)Bεt, with Φt(L) = Πt(L)
−1.

Similar to Herwartz and Rohloff [2018], the following analysis is based on dynamic responses

assumed to be linear conditional on the regime G(·) = 0, G(·) = 1 or quantiles thereof. This

implies impact matrices BB′ = Ω forming covariance matrix Ω which is constant over time

and there exist regime-dependent IRFs from time horizon h = 1 onwards. This consequently

defines the IRFs as Φl(L)B in the low regime and Φh(L)B in the high regime.

In this sense, we assume that non-linearity is modeled in the reduced form estimation and

the error terms are ’smoothed out’, but might contain remaining heteroskedasticity. Bruns

and Piffer [2021] discuss that modeling a smooth transition variance and autoregressive struc-

ture simultaneously is computationally challenging. They circumvent it with the inclusion
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of an external instrument which would need manual construction and thus, additional eco-

nomic assumptions [cf. Känzig, 2023]. However, in the current setting we assume and verify

non-Gaussianity of the residuals, in which case identification based on non-Gaussianity out-

performs the identification based on external instruments in terms of the MSE of the estimated

matrix B [shown in a simulation study in Crucil et al., 2023]. Alternatively, the model pre-

sented in Crucil et al. [2023] would allow for a combination of both methods. The resulting

model performs better for a relatively large correlation between instrument and shock to be

identified. We lack such an instrument, thus, leave the model free from external assumptions

and make use of a flexible independent component analysis (ICA)-based approach to identify

the non-unique matrix B to obtain the uncorrelated εt = B−1ut ∼ (0, IK). Identification

based on ICA has the advantage that it performs equivalent well to identification based on

heteroskedasticity if heteroskedasticity is present in the error terms [Herwartz et al., 2022].

Economic identification is installed as a second step.

2.1 Statistical and economic identification of structural shocks

For identification, the assumption of at most one Gaussian shock in the vector εt implies

a structural matrix B which is unique up to scaling and ordering [Comon, 1994]. Following

principles of independent component analysis (ICA) this can be used for identifying structural

VAR model. Multiple methodological approaches have developed to use this general ICA

results for identification, i.e. by alternative recursive ordering and dependencies [Moneta

et al., 2013], by non-Gaussian (Pseudo) Maximum Likelihood [Lanne et al., 2017, Gouriéroux

et al., 2017], by GMM estimation [Lanne and Luoto, 2021, Keweloh, 2020] or by nonparametric

dependence criteria [Herwartz, 2018a, Maxand, 2020]. Due to the flexibility of non-Gaussian

identification [Herwartz et al., 2022], we rely on this approach and, more specifically, apply

identification based on a nonparametric dependence criterion in the following, e.g., Maxand

[2020].

In order to find the matrix B which minimizes the nonparametric dependence criterion of

ε̂t = B−1ût, we use Givens rotation matrices and proceed in the following way:

1. Compute the Choleski decomposition C of OLS estimate Ω̂.

2. Compute B(θ) = CQ(θ) with a set of Givens rotation matrices Q(θ) determined by
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rotation angles θ.

3. Choose the rotation angle θ, i.e. decomposition B(θ) = CQ(θ), such that the depen-

dence in ε̂t(θ) = B(θ)−1ût is minimal.

The distance covariance dCov measures the distance between the joint characteristic func-

tion and the product of the marginal characteristic functions [Matteson and Tsay, 2017] and

is used to identify B̂ = B(θ̂) in terms of θ̂ = argminθdCov(ε̂t(θ)).

The identified structural shocks ε̂t(θ̂) are unique in statistical sense, but do not necessarily

hold an economic interpretation. Shock labeling, or economic identification, can proceed by

means of different tools. We are specifically interested in studying the form and structure

of the carbon policy and energy shocks. The following criteria help us to identify one of the

resulting structural shocks as the carbon policy shock:

(i) Quantitatively and statistically significant contemporaneous reaction of the associated

variable,

(ii) Dynamic responses in comparison to theory-based sign patterns,

(iii) Correlation to external shock series and comparison of the resulting shock to narrative

events.

Verifying the economic reasonability of the shocks by correlation with an external shock series

is similar to proxy-SVAR modeling or the combination of statistical and proxy identification

as, e.g., in Schlaak et al. [2023], Crucil et al. [2023], but in difference, we exploit the data in

the first step and account for economic identification in the second step. After considering the

additional criteria of the shock series ε̂t(θ̂), we claim to have identified the structural shock

series and can interpret the resulting impulse responses. Details on the performed steps are

described in the results section.

Next to impulse response functions, historical decompositions of the involved series provide

a tool for interpreting the interconnections. For the present nonlinear VAR we follow Wong

[2017] by defining the related historical decomposition. Wong [2017] writes the VAR process

in companion form

Zt = Hµ+AtZt−1 +HBεt,
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where

Zt =


yt
...

yt−p+1

 , At =

 A1,t . . . Ap,t

IK(p−1) 0K(p−1)×K

 , H =

 IK

0K(p−1)×K

 .

From this equation, he defines the historical decompositions of the variables in Zt depending

on the contribution from the structural shocks, the initial conditions and a steady state

component:

Zt = HBεt +

t−(p+1)∑
j=0

AjHBεt−j︸ ︷︷ ︸
Contribution from shocks

+A(t−p)Zp +


t−(p+1)∑

j=0

Aj

Hµ

︸ ︷︷ ︸
Baseline projection

.

An indication of the effect of an unexpected change in one of the variables can displayed by

comparing the effect in the first part of the right-hand side to the overall estimated series

which equals Zt minus the remaining exogeneous component [Wong, 2017].

3 European carbon pricing in boom and bust times

We utilize the described ST-SVAR model to examine carbon pricing in the EU. We present

the variable selection for the SVAR model, provide a concise overview of the technicalities

for model selection, and subsequently discuss the obtained results in terms of resulting shock

series, impulse response functions, and historical decompositions.

The candidate variables for the model setup were displayed in Figure 1 above. Out of

the three series of energy prices, i.e. oil, coal and gas prices, we drop the series of coal prices

due to its high correlation to the oil price series (robustness is discussed in Subsection 3.2.4).

The resulting VAR model is four dimensional involving carbon prices, two energy price series

and one series representing economic output. Our main model involves overall industrial

production as the economic output variable. We analyze sector-specific impacts later on.

Following Chevallier [2011], the vector yt of our main SVAR model contains monthly data for

t = 2006M9− 2023M2 of

dindprod Industrial production (in log-diffs),

dEUA EUA carbon price futures (in log-diffs),
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dBrent Brent oil futures (in log-diffs),

dGas Gas futures (in log-diffs).

In this sense, we cover all three phases of the ETS. The data for the carbon and energy

futures are taken from Datastream Refinitiv. The industrial production data comes from

OECD. All time series in Figure 1 display non-stationary patterns which lead us to include

all variables in log diffs into the model. We can identify clear high and low regimes, especially

for carbon prices, gas prices and production. After 2020 the series of energy and carbon

prices show the beginning of the recent price increases. We study if the recent price increases

predominate the whole model by checking for robustness in a model for the sub-period until

the end of 2019 in Subsection 3.2.4. In our main model we use the full time period as we

see the recent increase in gas and carbon prices and the crisis period as an interesting time,

especially with regard to future developments.
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Figure 2: Transition function and the related transition variable ’industrial production’.

3.1 Technicalities

In the sense of a smooth transition model, we are interested in effect differences over different

regimes determined by the transition variable. For setting up the smooth transition model for

yt = (dindprodt, dEUAt, dBrentt, dGast) we need to define this transition variable (denoted

by zt in (3)). As we are interested in the interactions over the business cycle, we choose

industrial production as transition variable. Next to industrial production ((i)) we can further

identify nonlinearity over three additional potential transition variables: (ii) carbon prices to

investigate whether there are different mechanisms at play in regimes of higher prices, which
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Lags SIC AIC JBstat pvalue

VAR1 -21.05 -21.39 ε̂1 44.37 2.3e-10

VAR2 -20.71 -21.32 ε̂2 97.78 0.00

VAR3 -20.35 -21.23 ε̂3 3742.95 0.00

VAR4 -20.06 -21.21 ε̂4 182.05 0.00

Table 1: AIC and SIC values for different lag length choices (table on the left), separate Jarque Bera test

results for the error series (table on the right).

would especially provide hints for future developments, (iii) the output gap; (iv) the time.

We additionally check for the overall stability of all models and the stability of the higher and

lower regimes separately. We find instability for options (ii) and (iii) which is due to a small

number of observations in one of the regimes. We discuss the results for industrial production

as the transition variable in our main model and display additional results for other transition

functions in the Appendix. The estimated transition function G(zt−1) with the standardized

transition variable industrial production zt−1 are displayed in Figure 2. We can identify clear

regimes of higher and lower industrial production (which are upside down in the graphic due

to the negative sign in the transition function in Equation (3)) and periods where the model

is in transition between the two regimes as, e.g., between 2018 and 2020.

Additionally, we find that AIC and BIC values are in fact lower for the ST-VAR compared

to the linear counterpart without regime switches which provides additional reasoning for

nonlinear transmissions. For the choice of the lag order we also rely on the information

criteria (AIC and SIC suggest 1, see Table 1) and we end up using p = 1 lags when additionally

checking the model residuals. We include a constant as deterministic term in the model. For

identification based on non-Gaussianity, we need to verify that the shock series are actually

non-Gaussian [c.f., Maxand, 2020]. We run Jarque Bera Gaussianity tests on the shock series

separately and find that all shocks are non-Gaussian with very small p-values. The test results

are collected in Table 1.
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3.2 Results

From the identified model we derive the impulse response functions (IRFs) for the high and low

regimes with industrial production as transition variable. The IRFs for the log differenced

variables with 16% and 84% wild bootstrap confidence intervals based on 200 draws are

displayed in Figure 3. The grey shaded area belongs to the expansion period, i.e., high

industrial production, and the blue area refers to recession periods, or more precisely, low

industrial production. While generating the bootstrap samples we add a stability control

restriction and kick out unstable draws. The resulting IRFs in Figure 3 correspond to the

stable draws. The comparison between the model with and without stability control is shown

in Figure A5 in the Appendix. We find that the confidence bands for both models are largely

identical.

We order the responses in the way that the variable associated to each shock shows

the largest (and statistically significant) response. We suspect the second shock to be the

carbon price shock from its impact on the carbon price series. Additionally, we claim to have

identified the effect of oil and gas prices in columns three and four of Figure 3. In order to

further interpret the IRFs, we first need to discuss the proper identification and interpretation

of the structural shocks.

3.2.1 Economic shock identification

After applying the statistical identification technique, the resulting shocks are least dependent

and represent independent sources of the fluctuations in the model variables. For turning the

shocks into an economically reasonable source and identifying them as carbon or energy price

shocks, we study their characteristics in more detail and relate them to event series from the

literature.

The carbon price shock

As described in Section 2.1, after statistical identification of independent shocks, we econom-

ically reason the carbon policy shock by its correlation with an external shock series, i.e.,

the series of regulatory events generated by Känzig [2023]. We additionally identify crucial

narrative events for which we expect the shock to be either positive or negative. We find a

medium correlation with the external shock series, especially during certain historical events
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Figure 3: IRF with wild bootstrap confidence intervals for both regimes with transition variable indprod after

stability control.

and discuss the results in the following.

Känzig [2023] manually constructs a series of regulatory events containing mostly supply-

side news on emission allowances. He generates a carbon policy surprise series based on the

daily change in carbon prices relative to the wholesale electricity price on the day before the

event. The surprise series is aggregated into monthly events from 2005 to 2019. In Figure 4

we display the correlation of our resulting structural shocks with the shock series from Känzig

[2023]. We compare our shock to the shock series consisting of regulatory events (Kzg surpr)

and the shock series identified in Känzig [2023] as a carbon policy shock (Kzg shock). The

correlation of our carbon policy shock shows a correlation of 0.35 with the news surprise series

(without prior assumptions) while the shock Kzg shock shows a correlation of 0.26. When

plotting our shock series against the news surprise series we find that our series covers most

of the main disruptions in carbon prices, e.g., large peaks as the vote against the back-loading

proposal in April 2013 or the news on the auction volume in 2019 [Känzig, 2023]. We, thus,
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Figure 4: Correlation of the resulting structural shocks ε̂t and the two shock series from Känzig [2023] (left);

the series of collected regulatory events (black line) and the resulting structural shock from our model (upper

panel) and the one from Känzig [2023] (lower panel).

label our shock as a carbon price shock. Furthermore, our identified oil price shock shows a

small correlation to the news surprise series but a stronger correlation of 0.33 to the identified

carbon shock series from Känzig [2023]. This is in line with the original study by Känzig

[2023] which also finds a correlation to oil supply shocks. This might be due to the fact that

his shock covers more disruptions important for oil producers. We next study our oil price

shock in more detail and find it largely correlated with the oil news shock from Känzig [2021].

The energy price shocks

In general, energy price shocks might arise from supply, demand or expectation disturbances

[Kilian, 2009]. During the observation period 2006-2023, several disruptions have occurred

in all dimensions. Especially, the spike in oil prices in 2008 and the explosion of gas prices

in recent times might be based on external events. In the following, we verify our resulting

shocks based on disruptions that have been discussed in the literature. The energy shocks

that result from the model are related to the event series of oil supply news of Känzig [2021]

and the series of gas supply events of Alessandri and Gazzani [2023].

Concerning oil prices, different proxy event series have been applied in the literature to
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identify an oil supply, surprise or demand shock [see, e.g., Stock and Watson, 2012, for a

discussion]. In the following, we use the series of oil supply news generated from OPEC

announcements by Känzig [2021] to discuss our identified shock series. The series is built

from OPEC press releases in the period 1983-2017. On his webpage, Diego Känzig provides

the updated supply news series up to 2023 which we use to compare our shock series. Dis-

entangling expectations-driven components of oil supply and demand, the supply news series

allows us to isolate news about future oil supply. We find our identified shock series well

correlated with the oil supply news shock (30%) and even stronger with the shock series

identified by Känzig [2021] (51%), see Figure 4. Plotting the identified series against each

other we find them largely comoving while our series is partly more volatile. Important events

like, for instance, the drop in 2008 and 2015 are captured by our series. The drop in 2015

is discussed by Känzig [2021] to correspond to the OPEC announcement that oil production

levels stay unchanged. We infer that our identified shock contains widely similar information

as the oil supply news shock series of Känzig [2021]. However, as we can not disentangle the

supply news from other channels of demand or supply disruptions, we identify our shock as

a combined oil price shock and can specify the effects of the supply and demand side in the

associated historical decompositions later on. A further comparison to the shock series from

Degasperi [2023] might be interesting.
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Figure 5: Correlation of the oil news event series Kzgoilsurpr from Känzig [2021] with the identified model

shocks (left) and joint plot of the oil supply news shock series (Kzgoilshock) and ε̂Brent,t (right).

Focusing on the gas prices, Alessandri and Gazzani [2023] study the most recent increases
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in prices. They generate a news event series for the time period 2010 to 2022 by select-

ing relevant days and news related to ’Title Transfer Facility’, ’Liquid Natural Gas’ and/or

’Gazprom’. The resulting series contains 50 daily supply shocks of which 26 daily events are

displayed in their Table 2. To compare it to our series, we aggregate the 26 events into 10

monthly disruptions. For some months, this means that positive and negative events, that

occur in the same month, largely cancel each other out. The correlation of the resulting series

and our statistically identified structural series are displayed in Figure 6. We find that the

shock from Alessandri and Gazzani [2023], gasAG, shows the highest correlation of 0.29 with

the resulting gas price shock from our model ε̂Gas,t. The correlation to all other shocks is

negative and below 10%. The right-hand side of Figure 6 displays the energy shock series in

orange and the news events in black. Given the schematized event series, this correlation is

quite high. Our shock series covers disruptions as the increasing conflicts between Russia and

Ukraine in 2014 and recent positive events related to the Nordstream pipeline in mid 2022

and the negative event of Gazproms reassurance to provide Europe with gas. Our identified

gas price shock might still contain demand side disturbances as mentioned in the case of the

oil prices. We point to such events when studying historical decompositions.
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3.2.2 Dynamic causal relations & historical decompositions

The impulse responses in Figure 3 are useful to analyse the dynamic causal effects of the

identified shocks. The main results concern differences in expansion and recession times as

well as the endogenous interaction of carbon prices with production and energy prices. Based

on the historical decompositions in Figure 7, we can identify the role each shock plays in

the development of the log differences of the variables over time. We mainly focus on the

decomposition of growth rates of industrial production and carbon prices and can state several

results.

To further verify that the IRFs displayed in Figure 3 are reasonable, we first consider

the interaction between energy prices and industrial production. Such interactions should be

similar as in previous studies like, e.g., the sign pattern in Kilian and Murphy [2012] and

effects in Känzig [2021], Degasperi [2023] who study diverse oil supply (and demand) news

effects on the world and US industrial production. We find that industrial production has

a positive impact on the oil and gas price that is larger in expansionary times compared to

recession times. This means that the positive effect of demand shocks is larger in boom times.

Reversely, oil price shocks have a negative instantaneous effect on industrial production in

both regimes [cf. Kilian and Murphy, 2012]. The effect is positive after a few periods in

recession times which highlights the role of demand shocks in recessions. Gas prices show

an opposite pattern which is in recession times similar to the one in Alessandri and Gazzani

[2023]. In the historical decompositions, we find that industrial production is largely driven

by productivity shocks itself (which might be interpreted as aggregated shocks of factors

important for economic performance). The second largest factor is the oil price shock which

often counteracts the growth rate of production. This aligns with the instantaneous negative

effect visible in the IRFs in Figure 3. The periods of negative growth rates after 2008 and in

2020 are driven largely by productivity shocks and are only to a certain extent explainable

by oil and gas prices. We see the largest contribution of oil prices around 2016. Towards

the end of the sample in and after the 2020 crisis the oil prices seem less important. When

zooming in on the period after 2022, the growth rates of industrial production are a mix of

all four shocks with increasing importance of the gas price shock as discussed in Alessandri

and Gazzani [2023].

We are further interested in the nonlinear sources and effects of the carbon price series.
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In our model, this accords with the relation between energy prices and industrial production.

The impact of energy prices on carbon prices is positive (and significant for an oil price shock)

in recession times and negative in expansion times. This is in line with the results of Friedrich

et al. [2020]. In their nonlinear model, they find a positive relation between oil prices and

carbon prices which is less strong for the recession period located after 2009. Our model

additionally allows for identifying the effect in the opposite causal direction: the effect of

carbon price shocks on energy prices. Boer et al. [2023] and references therein point to a

negative effect of demand-side climate policies on fossil energy prices. We find such negative

effects of an increase in carbon prices in recession times. In expansion times the increase of

carbon prices is positively coupled with fossil energy prices such as oil and gas. We can find

more evidence in the historical decompositions in Figure 7. When studying the growth rates

of carbon prices, we find that the series is mostly driven by external carbon price shocks.

The decrease after 2008 is partly driven by industrial production and gas prices. This adds

to the results of Koch et al. [2014] who identify the demand side channel as a determinant for

the decrease during that time. The crisis period in 2020 with an additional drop in carbon

prices shows that the prices react to external economic crises. This means that allowances

are cheaper during that time. Implemented in 2018, the market stability reserve (MSR) is

supposed to counteract allowance supply imbalances linked to business-cycle shocks. After the

COVID crisis, we do not find an increased coupling of carbon prices to industrial production

which might support the effectiveness of the MSR. We instead find that carbon prices are

strongly influenced by gas prices. Such an increased coupling has played an increasingly

important role in recent months after the observation period.

3.2.3 Effects across different economic sectors

To precise the effects of an increase in carbon prices on economic production we substitute

industrial production with the sector-specific performance of four major sectors of which two

are covered by carbon pricing, manufacturing and aviation, and two are indirectly affected via

cost pass-through, construction and transport [Cludius et al., 2020]. Monthly data series are

taken from the OECD database and Eurostat and the log differenced data is used. The rest of

the model setup remains unchanged, meaning that we build the models around the aggregate

industrial production level as transition function. For the road transport data, aggregated
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data on the European level is not available. Instead, we consider the country-specific data,

which is available on monthly level, namely the ’Total road freight transport’ for Germany,

Spain, Czech Republic, Bulgaria, Poland and France. We average over the available data and

deseasonalize and smooth the series. The resulting series is shown as a part of Figure 1. In

that sense, we use these variables to get an indication of the interplay between the transport

sector, energy and carbon prices. The size of the effects, however, are per se interpretable

only to a certain extent as not all European countries are covered. To cover the sector of

aviation transport, we use total aviation passengers which has been available on EU level

starting in 2008. The corresponding model, thus, covers a shorter period.

Correlation between shocks:

econ var (ε̂EUA, Kzgsurpr) (ε̂Brent, Kzgoilsurpr) (ε̂Gas, gasAG)

manufacturing 0.34 0.21 0.28

construction 0.34 0.23 0.26

aviation 0.38 0.38 0.29

road transport 0.34 0.36 0.31

Table 2: Correlation between statistically identified shocks ε̂EUA, ε̂Brent and ε̂Gas and the external shock

series Kzgsurpr, Kzgoilsurpr and gasAG from Känzig [2023], Känzig [2021] and Alessandri and Gazzani [2023],

respectively. The first column indicates which economic variables is included in the model.

In terms of model identification, we find that the carbon and energy shocks are similarly

well-identified compared to the main model. We summarize the correlations in Table 2. Thus,

we assume that we can interpret the effects of oil, gas and carbon prices as in the main model.

In the following, we focus on the response of the sector-specific production to a carbon price

shock which is displayed in Figure 8. For manufacturing and construction, the remaining

IRFs are largely in line with the results from the model including industrial production. For

the road transport and aviation sector the full 4x4 matrix of IRFs is shown in the Appendix.

In Figure 8 we can see that manufacturing and construction react both similarly to a

carbon price shock as aggregated industrial production in the previous model. The response

is insignificant in both regimes. Overall zero effects might be interpreted as efficiency gains:

The prices increase but the amount of production remains unchanged. For manufacturing,

this is in line with the results of Martin et al. [2014] for the UK who find higher efficiency but
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Figure 8: Reaction of manufacturing, construction, passenger aviation and freight transportation volume to a

carbon price shock. The response with blue confidence intervals corresponds to recession times, and grey to

expansion times as in Figure 3.

no effect on revenues resulting from an increase in carbon taxes. Also Dechezleprêtre et al.

[2023] find no or even a positive effect of the EU ETS on revenues in several sectors. The

positive effect is visible in the medium- to long-term response displayed for manufacturing in

Figure 8, which tends to be positive. In our aggregated model we can follow that there is no

significant cost pass-through for the construction sector [Cludius et al., 2020, similarly find a

medium-sized pass-through for cement and glass, for instance].

When studying the response of the aviation and road transportation sector we find sig-

nificant impacts on the average transportation in the six European countries. The effect is

instantaneously insignificant but positive after some month in bust times and negative in

boom times. This aligns with the results of cost pass-through of refineries to the consumers

of Diesel found in Cludius et al. [2020] and a negative effect on emissions in the aviation

sector in Fageda and Teixidó [2022]. The negative impact on the road transport sector is

much stronger as in the manufacturing sector and thus, calls for a careful extension of the

ETS on the transport sector which pays the costs of both their direct and indirect emissions.

It hints at an effective carbon pricing system when studying the intermediate sectors. The

large positive effects in recession times might be due to the fact that the crises in 2020 had a

strong effect on the aviation sector (with an external flight stop in 2020). Thus, the response

to a carbon price shock is heavily influenced by the second recession period.

3.2.4 Robustness

We have run various modifications of the baseline model to study its robustness. As a first

modification, we have substituted the Brent oil price series with the respective series for

coal. The resulting transition function is displayed in Figure A3. We find that the transition
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function looks largely similar to the model run for the oil price series. It is slightly less

pronounced in the extreme regimes. The IRFs of this model are shown in Figure A4. While the

interaction between the other variables stays largely unchanged, the coal series interacts less

pronounced with industrial production, carbon prices and gas prices compared to the series

of oil prices. On impact, most responses are insignificant but we find a slightly significant

response of industrial production to the carbon policy shock after some months in recession

times. Robustness concerning coal prices in the Appendix confirms the relationship between

industrial production and carbon prices. Due to the instability of the higher regime, we need

to plot the 70% quantile of the transition function. Additionally, we run the model for a

shorter time period until 2019 only. This allows us to better compare the results to the study

of Känzig [2023] and study the influence of the recent recession period on the overall results.

The results appear largely similar with less pronounced effects when considering, e.g., the

interaction of oil prices and industrial production.

3.3 European carbon policy and the way ahead

From the results of this empirical exercise, we can draw some important conclusions on

European carbon policy. Focusing on heterogeneous effects in boom and bust times allows

us, on the one side, to control for differences when calculating historical decompositions and,

on the other side, explicitly quantify the differences when studying IRFs for both regimes.

From the historical decompositions, we find that the recent crisis has affected carbon prices

stronger which is underlined by the strong interaction of aviation amount and carbon prices

in recession times in the IRFs. These results indicate that the specific nature of a crisis

might be taken into account before drawing conclusions on carbon price effects. This is, for

instance, in line with discussions in Annicchiarico et al. [2022] and Doda [2016] who specifically

highlight the importance of country conditions and sources of crises when implementing tools

coupled to the business cycle. While Heutel [2012] suggests an adaptation of emission caps

to GDP growth deviations, our results rather support taking more detailed indices coupled

to productivity into account when adapting to the business cycle.

Our observations cover effects on the aggregate level and sector-specific effects. When

interpreting the effects it is important to discuss how the sectors interact with carbon prices

due to emission coverage, free allowance allocations (e.g., in the aviation sector) or a cost
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pass-through. In this context, taking other carbon pricing tools into account is crucial as it

allows us to study the intertwined effects of different initiatives. For instance, Annicchiarico

et al. [2022] study the development of intensity standards, emissions cap, and emissions tax

over the business cycle. Along these lines, the European ETS might lead to less economic

volatility compared to carbon taxation as it has a built-in dampening effect on business cycles.

However, studying the increased effect heterogeneity in recession regimes in our IRFs might

hint at the fact that the effects on output and price volatility might be interesting to study

in a next step. When specifically focusing on the transportation sector, the stringency of

the emission cap might be overreacting in recession times visible in the positive coupling.

While this sector is not specifically covered in the cap-and-trade system, its reaction calls for

studying (1) the interaction of hybrid carbon pricing tools as present in the EU, and, (2) a

careful implementation of the extension of EU ETS in the next years.

With regard to the implementation of the MSR, our results provide several indications.

In order to avoid a green paradox introduced by the MSR, Gerlagh et al. [2021] proposes a

hybrid price-quantity-based regulation mechanism instead of quantity- or price-based only.

The positive effect of carbon prices on transportation (and in construction, see Figure 8) in

recession times after some months might provide support for the statements in Gerlagh et al.

[2021] that due to the banking of allowances in the MSR price increases might lead to a lagged

positive response in economic activity.

The data is studied on an aggregated level analysing the European ETS. Considering

carbon leakage, which has been increasingly studied in the literature [see, e.g. Annicchiarico

and Diluiso, 2019], it appears additionally reasonable to study sectors separately as the risks

are different depending on their leakage potential. We find less strong effects in the manufac-

turing and building sector where the production of materials might partly be relocated which

is not possible to the same extent in the transportation sector.

4 Conclusions

In this paper, we investigate carbon pricing on the EU level in recession and expansion

times. We study a schematic four-dimensional SVAR model identified by non-Gaussianity

which is extended by smooth transitions and external shock correlation measures. We find

correlation of the statistically identified shocks with oil, gas and carbon instrument series
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from the literature which confirms the model set-up. Overall the analysis provides us with

insights on how carbon prices are coupled to the business cycle, more specifically, how they

are related to energy prices and industrial production depending on the status of the economy.

This becomes especially important when discussing regulation methods such as the MSR or

the extension to sectors like road transportation.

We find that carbon prices react to economic crises, specifically, if such crises lead to low

performances of carbon-intense sectors (such as aviation in the 2020 crisis). Additionally, the

road (and aviation) transportation sector reacts to carbon prices in boom and bust times.

Thus, cost pass-through should be overall taken into account when extending the coverage of

the ETS even more importantly in its unequal impact on society.

For assessing future policy implications, these results can serve as guidance but are not

transferable one-to-one, as the changing macroeconomic settings and further redistribution

and substitution policies need to be taken into account. Additionally, due to the proceeding

financialization of the European carbon market, further measures to study the financial mar-

ket need to be taken into account in future studies of the carbon market. A further explicit

comparison of the effects of EU carbon prices and carbon taxes might be not easy to assess

empirically, but important in order to separate intertwined policy effects.
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A Appendix: Robustness Checks

A.1 Different economic output variables

Figure A1: Resulting IRFs when including aviation amount instead of industrial production. The rest of the

model stays unchanged.
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Figure A2: Resulting IRFs when including road transport amount instead of industrial production. The rest

of the model stays unchanged.
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A.2 Substituting oil prices by coal prices

Figure A3: Transition function for transitions variable indprod when including coal instead of oil prices.
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Figure A4: Resulting IRFs when including coal prices instead of oil prices. The rest of the model stays

unchanged.
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A.3 Bootstrap intervals with and without stability control

Figure A5: IRFs for transition variable indprod and full time period with and without stability control for the

bootstrap iteration
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A.4 Time period until 2019M12

Figure A6: Transition function and the related transition variable ’industrial production’ for the time period

until December 2019.
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Figure A7: IRF with wild bootstrap confidence intervals for both regimes with transition variable indprod

after stability control for time period until December 2019.
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